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Intermediate Quantum Statistics for Identical Objects 
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Methods to construct various algebras of creation and annihilation operators of 
physical objects in complex quantum state spaces with a nonnegative metric are 
proposed. All allowed algebras for the cases of  identical nonrelativistic systems 
in the second quantization of the Schrodinger equation, of  identical quanta of  
relativistic tensor fields, and of  identical quanta of relativistic spinor fields are 
constructed. A comparison of the obtained algebras with the well-known algebras 
of  this type (Fermi, Bose, para-Fermi, and superalgebras) is given. 

1. INTRODUCTION 

The mathematical formalism of a quantum theory, which deals with 
systems of a variable number of physical objects (particles, quanta, system, 
particlelike formations, and so on), has to contain the notions of creation 
operator ak and annihilation operator ak for any type k of the considered 
objects. It is supposed that the action of these operators should be deter- 
mined in space H of quantum states [0) for the considered system. Hence, 
the totality of the ~k and ak for k c {k} generates some algebra A({k}) in 
the state space H, which one may call an algebra of creation and annihilation 
operators. 

All properties of A({ k}), as well as types and statistics of the considered 
objects, are determined by a system of identical relations for operators hk 
and ak. 

The algebra A({k}) contains operators of some physical quantities 
characterizing the system with a variable number of objects. In particular, 
the operator E of the observable total energy of such a system may be 
written, as a rule, in the form 

E =E Ek, Ek = ekNk (1) 
k 
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Here ek is the energy of one object of type k, and Nk C A({k}) is the operator 
of a number of objects of type k, which one may consider as identical objects. 

As a rule, the modern quantum theory makes use of only two standard 
algebras of creation and annihilation operators, which satisfy the relations 

Nk = hkak , [ ak, hi]• = 6kt, [ ak , at]• = 0 (2) 

Here the plus sign corresponds to the Fermi algebra AF({k}) and the 
Fermi-Dirac statistics (nk cO, 1), and the minus sign corresponds to the 
Bose algebra AB({k}) and to Bose-Einstein statistics (nk C O, o0). 

But the development of quantum physics has introduced a set of 
nonstandard algebras of creation and annihilation operators which differ 
both from AF and AB. As examples of such algebras one can mention 
anomalous algebras (Klein, 1938; Streater and Wightman, 1961; Wigner, 
1950), algebras of para-Bose operators (Wigner, 1950; Yang, 1951.; Green, 
1953; Greenberg and Messiah, 1965; Govorkov, 1973), algebras of para- 
Fermi operators (Green, 1953; Volkov, 1959; Gallindo and Indurian, 1963; 
Greenberg and Messiah, 1965; Govorkov, 1966, 1973; Yamada, 1968), 
algebras of superoperators (Roman and Aghassi, 1966; Santhanam, 1976; 
Kuryshkin, 1980; Madivanane and Satyanarayana, 1984), q-algebras (Aric 
and Coon, 1976; Kuryshkin, 1976; Siafaricas et aL, 1983), /z-algebras 
(Kuryshkin, 1976, 1980; Balashova et al., 1985), (b-algebras (Kuryshkin, 
1976; Dubkov and Kuryshkin, 1981; Grachov et al., 1982), and M-algebras 
(Kuryshkin, 1976; Grachov et al., 1982, Grachov and Kundu, 1982). One 
can find a brief discussion of all of these algebras in the report by Kuryshkin 
and Entralogo (1984). 

From the point of view of the statistics for identical objects one may 
consider the algebras of para-Fermi operators, Where 

P 
1 * Nk =5[ak,  ak]-+�89 ak Y. b 0) (3a) 

j = l  

[b~ ), b~J)]+ = ~k,, [b~ ), blJ)]+ = = 0 (3b) 

[b(k ~), blJ)]_ = [b(k ~), bl~)]_ = O, i r  (3c) 

and the algebras of superoperators, where 

�9 * 1 - p + I  * P - P  ( 4 a )  Nk = akak, [ak, ak]- = p[ ~'k"k 

[ak, hl]-- = [ak, a,]_ = O, k ~ l (4b) 

are the most important algebras. In fact, for algebras (3a)-(3c) as well as 
- -  * p + l  (4a), (4b), p is any integer, a~ § "k = 0 and ng c O,p,  i.e., the number 

of identical objects in the same quantum state here may be varied from 0 
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to p. That is why these algebras claim to some description of systems with 
a variable number of identical physical objects obeying some intermediate 
quantum statistics (between Fermi-Dirac and Bose-Einstein statistics). 

In recent years the interest in the intermediate statistics, including the 
so-called fractional statistics, where 

akht = e-i~ aka I = ei~ k r l (5) 

has been increased by investigations in the theory of the quantum Hall 
effect (Halperin, 1984; Tao and Wu, 1985), in the general theories of field 
quanta (Kuryshkin, 1980; Dubkov and Kuryshkin, 1981; Grachov et aL, 
1982; Grachov and Kundu, 1982), charged exitations (Wu, 1984; Su, 1986), 
monopoles (Ringwood and Woodwaard, 1984), and other quasiparticles. 

This is why a look at possible algebras which may be connected with 
intermediate quantum statistics seems to be of interest, and it is quite natural 
that the main interest concerns the algebras determined in a statespace with 
a nonnegative metric which would allow a clear and consistent probability 
treatment. 

2. ALGEBRAS OF CREATION AND ANNIHILATION 
OPERATORS FOR IDENTICAL OBJECTS 

To analyze possible algebras of creation and annihilation operators for 
identical objects in a complex space H+ of state vectors 10) ((010') = <4,'14,)*) 
with a nonnegative metric ((~b I ~b)-> 0) we start from the following intuitive 
definition. 

Definition. The algebra A(1) with one pair of generators a and h = a + 
mutally adjoint in /4+ is an algebra of creation and annihilation operators 
for some identical objects if: 

(a) There exists a self-adjoint operator N = N + e A ( 1 )  with only 
integral eigenvalues from 0 to s, so that 

N l n l n ) = n l n l . )  , n c O ,  s, s>- l .  In ln)#O (6a) 

where [nln)~ H+,  and I. are indexes of degeneration. 
(b) The actions of  generators a and a on eigenvectors of operator N 

are given by the relations 

a[0/o) = 0; alnln) = ~. , . In - 1, I.-1), n ~ 1, s (6b) 

h ln l . )= . f l . , , , [n+l , l .+ , )  , n~0 ,  s - 1 ;  h i s / , )  = 0, s < o c  (6c) 

where an~,, and/3.1,, are nonzero complex numbers. 
Relations (6) enable us to treat the vector Inl. > c H+ as a quantum 

state with a fixed number n of some physical objects and operators a, a, 
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N c A(1) as, respectively, annihilation, creation, and number operators for 
such objects. 

For finite s # 1, the number n of objects in the same quantum state 
may change from 0 to s, i.e., the physical objects associated with such an 
algebra A(1) obey an intermediate statistics. 

It is quite obvious that the intuitive definition (6) defines in reality a 
set {A(1)} of different algebras including the Bose algebra AB(1) and the 
Fermi algebra AF(1). In other words, one .algebra A(1) may differ from 
another by its operator identities for the generators a and h, which should 
be added to (6). 

Hence our intuitive definition (6) is not unique. Nevertheless, it makes 
it possible to formulate and to prove a set of theorems which brings out 
the unique definitions of  A(1) and the necessary classification of possible 
algebras of creation and annihilation operators for identical objects. In this 
paper I shall only enumerate these theorems, the proofs and immediate 
consequences of which are given in Kuryshkin (1987). 

Theorem 1. There exists at least one subspace H+(s) c 14+ which gives 
an irreducible representation of the algebra A(1) with nondegenerate eigen- 
values of N. Any vector 10) of H+(s) may be written as 

10) = ~ O, In)~H+(s)cH+ (7a) 
n=0 

NIn)=nln),  (nln') = ~,,,, n,n'cO, s (7b) 

where 0, are complex numbers. 

Theorem 2. The algebra A(1) of creation and annihilation operators 
in the space H+(s) is uniquely defined by a number s-> 1 (rank of the 
algebra) and a set of s numbers A, > 0 (parameters of the algebra) with 
which the action of any X c A(1) on any It p)~ H+(s) is uniquely determined 
by the relations 

a l0)=0;  aln)=A~/2ln-a), n c l ,  s (8a) 

bin) ='1/2'A n + l l n  q-l), n ~ 0, s-- 1; als) = 0 , s <oo (8b) 

Theorem 3, In an irreducible matrix representation of A(1) with s + 1 
rows and columns the representatives of a, a, and N may be written as 

- -  5~ ~ 1 / 2  (a)k,--ok., ,,,k , (h)k, 8k.,+,A~l, ( N ) k , = S k , ( k - 1 )  (9) 

where k, l ~ 1, s + 1, s is the rank, and )% are the parameters of the algebra. 

Theorem 4. The generators a and h and the number operator N in an 
irreducible representation of A(1) satisfy the operator identities 

IN, a]_ = a, IN, a]_ = - a  (10) 

aS+l=~ts+l=O, S<Ca3 (11) 
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Theorem 5. There exists a system of  2s 2 operator identities for the 
generators a and ~ in an irreducible representation of  A(1), in particular, 
s ( s  + 1)/2 identities 

S--I 
ak~tk+l ~ kk+l* rn+l m = tz,~ aa a (12) 

m=O 

where l < - k < - k + l < s + l ,  and s ( s - 1 ) / 2  identities adjoint to (12) with 
L # 0. The coefficients of such identities are real and uniquely determined 
by the parameters An of the irreducible representation with the help of 
recurrence relations. In particular, 

n 

/Xo k'k+l=Fk+! F 0 = l ,  Fn = [[ Ak>0 (13a) 
r l  ~ k = l  

�9 k,k+l 

_ ~ I - ~ m  l < - n < s - k - l + l  (13b) 
/z~.k+ t rn+k+t 1 n-- 

FnFn+l m=O F n - m  ' 

n--I k,k+l 
�9 k,k+l ['Ibm 
I~. - -  ~ s - k - l + l < - n < ~ s - I  (13c) 

m=O r n - m  ~ 

Theorem 6. Any operator x of the algebra A(1) in its irreducible 
representation may be written in the normal form where all creation 
operators are on the left of all annihilation operators, i.e., 

X = i Xkl ~kal, X ~ A(1) (14) 
k,t=o 

where Xkt are complex numbers. 

Theorem 7. The first s coefficients/x~; 1, m ~ 0, s - 1, of the first operator 
identity from (12) 

x 
a a =  Y~ l l*m m /z~ a a (15) 

m=O 

uniquely determine all parameters An of A(1) by the recurrence relations 

~--t F n _ l  
A n =  E [ 06~1 , n ~ l , s  ( 1 6 )  

,~=o r ,  m-1 

and for finite s the last coefficient/xl~ "1 of (15) is found by the equality (13c). 

Theorem 8. The number operator N in an irreducible representation 
of  A(1) may be written in the normal form 

N =  ~ 1'kaka k (17) 
k = l  
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with real coefficients Uk uniquely determined by the parameters An with the 
help of  the recurrence relations 

1 n ~1  ~'k 2 < n <  s 
= ' r . _ k  ' 

(lSa) 

On the other hand, 

An=n( ~k=l /)k--Fn-l'~-l/ F,_k ! , n~  1, s (18b) 

Theorem 9. The number  operator N of  A(1) in its irreducible rep- 
resentat ion may be always written down in the form 

k=l k=l 
(19) 

with real coefficients connected to the parameters An as 

CO=-- k=l Cl'kFk'~ S--CO= k=l C2"kF,-k' S<OO (20a) 

"-~ F~+k+ v F.  
n - - c ~  k=l ~' Cl'kr~-n k ~A=I C2'kF,-k' l<--n<s (20b) 

The form (19) of  N is not unique. 
The above theorems show that an irreducible representation of any 

algebra A(1) of  creation and annihilation operators in a complex state space 
H+ with a nonnegative metric may be uniquely defined by at least three 
methods: 

1. Rank s and parameters A, > 0, n c 1, s, which determine the action 
(8) of  a and a on the basis (7) of  subspace H+(s) are given. 

1,1 2. Rank s and real numbers /x  m, m ~ 0, s -  1, which satisfy the condi- 
tion of nonnegativity of  (16a) and are the first s coefficients of  operator 
identity (15) are given. 

3. Rank s and real numbers ~'k, k c 1, s, which satisfy the conditions 
of  finitary and nonegativity of  (18b) and are the coefficients of  N in the 
normal form (17) are given. 

All these methods to define A(1) are unique, but unfortunately are 
purely mathematical.  

While constructing a concrete physical quantum theory for systems 
with a variable number  of  objects one usually knows only a number  operator  
N in the form (19). Such an operator arises, for example, in the reduction 
of the observable energy operator to the form (1). 
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The operator N in the form (19) does not allow us to determine A(1) 
uniquely, but its system of equations (20) gives a method to determine the 
set of  allowed algebras. 

I shall demonstrate the correctness of the last statement with examples 
of quantum field theories where 

N = Co+ c l a a  + c~aa  (21) 

Here c~ and c2 are real coefficients determined uniquely by the quantization 
procedure, and c0 is some real constant which has to be introduced in the 
quantum theory to eliminate the energy of the state without objects. 

3. IDENTICAL NONRELATIVISTIC QUAN TUM SYSTEMS 

The second quantization of the nonrelativistic Schr/~dinger equation 
[the wave function ~,(x) turns to be an operator 6 ( x ) ~  A({k})] gives the 
energy operator (1) with a number  operator (21) for the systems in a fixed 
quantum state (identical systems) where Co = cl = 0, c2 = 1. 

With this one has from the system of equations (20) 

n = h , ,  l < _ n < _ s ;  s=h~ ,  s < c o  (22) 

Hence in this case any rank s >_ 1 is allowed, while An = n > 0. 
It follows now from (13) and (18a) that Fn = n!,  vl = 1, v, =0 ,  for 

- -  1 , 1  
n ~ l , s ;  ~ ' 1 = 1 ,  k~l"a=-I  for s = l ;  and /.~11"~=1 for s > l ,  /~n = 0  for 
2 < - n < s ,  and i ~ l ~ ' ~ = - ( s + l ) / F s  for 2 -<s<oo .  

Thus, for a quantum theory of systems with a variable number  of  
identical nonrelativistic quantum systems we have obtained the following 
results: 

(a) An algebra A(1) of  infinite rank in a space H+(co) is allowed. For 
this algebra An = n, n ~ 1, oo, 

N = aa ,  a n # O, a a  = 1 + a a  (23) 

Obviously this is Bose Algebra, AB(1). 
(b) Algebras of any finite rank s-> 1 in an ( s +  D-dimensional  space 

H + ( s )  are allowed. For these algebras h, = n, n ~ 1, s, 

. . s + l  h~aS N = aa ,  a s+~ = 0, a a  = 1 + a a  - (24) 
s !  

The last algebras coincide with the algebras of  superoperators (4) for 
identical objects. In the case s = 1 this is obviously the Fermi algebra AF(1). 

One can obtain the system of operator identities (12) for algebras (24) 
by determining the coefficients (13) with A~ = n. As an example, let us write 
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these identities and the matrix representat ion for the algebra (24) o f  rank 
2: {In > } = 10), I1), [2); N = h a ,  

a 3 = 0 ,  a =  0 

0 

a a  l + a a  3*2 2 * * * = - i a  a , a a ~ = 2 a - 2 a 2 a ,  2*2 a a = 2 - 2 h a + h 2 a  2 

and the adjoint  expressions. 

4. I D E N T I C A L  Q U A N T A  OF RE L AT IVISTIC  T E N S O R  F I E L D S  

A quant izat ion of  a tensor field gives the observable energy opera tor  
(1) with a number  operator  (21) where cl = c2 = 1/2. 

In this case we obtain f rom (20) 

A l = - c o ;  A ~ = 2 s - 2 c o ,  s < ~  (25a) 

A ,+ I=  - A ,  + 2 n - 2 c o ,  l < - n < s  (25b) 

I f  s = 2Sl, where Sl -< 1 is an integer f rom (25), we have As = 2s~ and at the 
same time As = 4s1-2Co,  i.e., a contradict ion,  Aa = -2s~ < 0. I f  s = 2s~ + 1, 
we have f rom (25) As = 2s1-2Co and at the same time As = 4Sl + 2 - 2 C o ,  i.e., 
a contradict ion,  sl = -1 .  I f  s = co, the system (25) has the parametr ic  solution 

AZk : 2k, /~2k+1 = 2k + c, c > 0 (26) 

Hence,  for a quan tum theory of  systems with a variable number  of  
identical quanta  o f  a tensor  field we have obtained the following results: 

(a) Algebras A(1) o f  infinite rank in a space H + ( ~ )  are allowed. For  
these algebras An are given by (26) and 

N ~[a, a ]+- �89  a m r 0 (27a) 

2 - c  
a a  = c + a a  + a 2 a 2 +  �9 �9 �9 (27b) 

C 

The opera tor  identity (27b) o f  these algebras contains an infinite number  
of  items [the coefficients are determined by. (13) and (26)] except for the 
case c = 1, when (27) is a Bose algebra AB(1). 

(b) Algebras A(1) o f  finite ranks are not  allowed. 

5. I D E N T I C A L  Q U A N T A  OF R E L A T I V I S T I C  S P I N O R  F I E L D S  

A quant izat ion o f  a spinor  field gives the observable energy opera tor  
1 (1) with a number  operator  (21) where cl = - c2  = - ~ .  
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With this, the system of equations (20) gives 

A1=2Co; hs=2s-2Co, s<oo (28a) 

An+~ = An +2Co-2n,  l<_n<s (28b) 

I f  s = oo, we have An = 2 n c o - n ( n -  1), i.e., a contradiction, An < 0 for large 
enough n. I f  s is any integer, we have As = 2SCo-s(s-1) and at the same 
time As = 2 s -  2Co, i.e., 2c0 = s and definitively 

Co=S~2, A . = n ( s - n + l ) > O ,  n ~ l , s  (29) 

Thus, for a quantum theory of systems with a variable number  of  
identical quanta of  a spinor field we have obtained: 

(a) Algebras A(1) of  the infinite rank are not allowed. 
(b) Algebras A(1) of  any finite rank s - 1  in an ( s +  1)-dimensional 

space H§ are allowed. For these algebras one has A, = n ( s - n +  1), 
n c 1, s, and 

1 * .~_ 1 as+l N=~[a, a] ~s, = 0  (30a) 

ah=s+ s - 2  * +" �9 �9 (30b) aa 
S 

The operator identity (30b) contains all the items hka k, k ~ , s ,  with the 
coefficients determined by (13) and (29). The particular case s = 1 of (30) 
is obviously the Fermi algebra AF(1). 

As an example, let us write the main relations for algebra (30) of  rank 
2: {In)} = 10>, II>; N = ~ta/2+ h2a2/4 and 

a 3 = 0 ,  a = 0 

0 

* 1 " 2  2 * * 2  * * aa=2-~a  a , ah2=2a-a  a, a2a2=4-2aa 

and the adjoint expressions. 

6 .  C O N C L U D I N G  R E M A R K S  

It is necessary to mention one more type of algebra which may be also 
connected with intermediate statistics for identical objects and seems to be 
useful in the quantum theory of identical spin waves. For such algebras the 
number  operator  has the form (21) with c l - - - 1  and cz=0.  The system of 
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equations (20) in this case forbids the infinite rank, but allows any finite 
rank s -> 1 with Co = s, An = s - n + 1, and 

N = s - a h ,  aS+~=0 (31a) 

�9 1 . 
aa = s - - a a + .  �9 �9 (31b) 

s 

The coefficients of the items hka k, k c 2, s, in (31b) are given by (13). 
The particular case s =  1 of the algebra (31) is naturally AF(1). 

The main relations for algebra 
* * 2  2 N = a a / 2 + 3 a  a /4,  

a 0  

a a =  1" 3 * 2  2 * 2 - s a a - g a  a ,  aa 2= h 1.2 - -  ~ a  a ,  

and the adjoint expressions. 

(31) of rank 2 are: {In)}=lO)  , I1>, 12); 

0 

0 

a 2 a 2 = 2 _ a a _ � 8 9  1"2 2 - s a  a 

We have already indicated the Bose algebra [(23) and a particular case 
of  (27)] and Fermi algebra [particular cases of (24), (30), and (31)]. We 
have also mentioned that the algebras (4) of superoperators for identical 
objects completely coincide with algebras (24) for identical nonrelativistic 
quantum systems. 

As far as the algebras (3) of para-Fermi operators are concerned, we 
have to underline that irreducible representations of  all allowed algebras 
A(1) with the number operator [compare with (3a)] N = [h, a]_/2 + Co are 
given by relations (30). I t i s  quite easy to show that a representation of a 
and h by the Green ansatz (3a) is compatible with (30a) but is incompatible 
with (30a) and (30b) jointly if s-> 2. Hence, the para-Fermi algebras (3) 
are not algebras of creation and annihilation operators for identical objects 
at least in the sense of  the definition (6). This fact demands a special and 
careful investigation. 

Finally, we have to conclude that objects obeying intermediate statistics 
(if they exist) might be described with the help of algebras of  types (24), 
(30), and (31), so that intermediate statistics for identical nonrelativistic 
quantum systems are connected with algebras (24), intermediate statistics 
for identical quanta of tensor fields do not exist, and intermediate statistics 
for identical quanta of spinor fields are connected with algebras (30). 
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